
OpenEXR File Layout
Last Update: Oct 29, 2019

Florian Kainz

Industrial Light & Magic

Document Purpose and Audience

This document gives an overview of the layout of OpenEXR 2.0 image files as byte
sequences. It covers both single and multi-part formats, and how deep data is handled.

The text assumes that the reader is familiar with OpenEXR terms such as "channel",
"attribute", "data window" or "chunk". For an explanation of those terms see the Technical
Introduction to OpenEXR.

Note: This document does not define the OpenEXR file format. OpenEXR is defined as the
file format that is read and written by the IlmImf open-source C++ library. If this
document and the IlmImf library disagree, then the library takes precedence.

Table of Contents
Document Purpose and Audience...1
Backwards Compatibility and New or Changed Functionality...3

OpenEXR Backwards Compatibility (1.7 and 2.0)..3
New Features for OpenEXR 2.0: Multi-Part and Deep Data..3

Basic Data Types..4
Integers...4
Floating-Point Numbers...4
Text..5
Packing...5

File Layout...5
High-Level Layout...5
Comparison between Single-Part and Multi-Part File Layouts...6

Components One and Two: Magic Number and Version Field...6
Magic Number..6
Version Field...7

Component Three: Header..10
Structure..10
Attribute Layout...11
Header Attributes (All Files)...11
Tile Header Attribute..12
Multi-View Header Attribute..12
Multi-Part and Deep Data Header Attributes (New in 2.0)...12
Deep Data Header Attributes (New in 2.0)..13

1

Component Four: Offset Tables...14
Offset Tables..14
Offset Table Size...14
Scan Lines..15
Tiles...15
Multi-part (New in 2.0)...15

Component Five: Pixel data..15
Chunk Layout (New in 2.0)..15
Regular Scan Line Blocks...16
Regular ImageTiles..17
Deep Data (New in 2.0)...18

Predefined Attribute Types...19
Sample File..22

2

Backwards Compatibility and New or Changed
Functionality

OpenEXR Backwards Compatibility (1.7 and 2.0)
OpenEXR 1.7 and earlier format files are fully supported by OpenEXR 2.0. You can still use
the 1.7 file format with the 2.0 library. If you use the 2.0 format for single-part scan line
image and tile image data, your data will be stored in the same way as the 1.7 files. You
can recompile your 1.7 files to take advantage of the new format EXRs (multiple-part files,
and/or deep scan line and deep tile data).

New Features for OpenEXR 2.0: Multi-Part and Deep Data
The multi-part format is an extension of the OpenEXR 1.7 single-part file format. In
addition to supporting the OpenEXR 1.7 data storage (a single scan line or tiled image),
OpenEXR 2.0 files can be used to store multiple views and/or deep data (deep scan line or
deep tiles).

While you can continue to use the 1.7 format for files, these changes to the file layout are
required to support the new multi-part and deep data features:

Feature Description See

Version
field

Bits 11 and 12 indicate whether the file contains
deep data (bit 11), or more than one part (bit 12).

Deep Data on page 7

Header To store more than one part in the file, you need to
have a header for each part.

Structure on page 10

Header
attributes

There are a number of attributes which have been
defined to store data which is relevant to deep data
and multi-part files. These include: name (one for
each part), data type (you can have different types
of data in different views), and the maximum
number of samples to take in a deep data channel.

Multi-Part and Deep
Data Header
Attributes on page 12

Offset
tables and
chunks

To store more than one part in the file, you need to
have an offset table for each part, and chunks for
each part.
The chunks must begin with a part number.

Component Four:
Offset Tables on page
14, and Chunk Layout
on page 15.

Deep Data Deep data has a unique storage format. Deep Data on page 18

3

Basic Data Types

An OpenEXR file is a sequence of 8-bit bytes. Groups of bytes represent basic objects such
as integral numbers, floating-point numbers and text. Those objects are grouped together
to form compound objects such as attributes or scan lines.

Integers
Binary integral numbers with 8, 16, 32 or 64 bits are stored as 1, 2, 4 or 8 bytes. Integral
numbers can be signed or unsigned. Signed numbers are represented using two's
complement. Integral numbers are little-endian (that is, the least significant byte is closest
to the start of the file).

OpenEXR uses the following six integer data types:

name signed size in
bytes

unsigned char no 1
short yes 2

unsigned short no 2
int yes 4

unsigned int no 4
unsigned long no 8

Floating-Point Numbers
Binary floating-point numbers with 16, 32 or 64 bits are stored as 2, 4 or 8 bytes. The
representation of 32-bit and 64-bit floating-point numbers conforms to the IEEE 754
standard. The representation of 16-bit floating-point numbers is analogous to IEEE 754,
but with 5 exponent bits and 10 bits for the fraction. The exponent bias is 15. Floating-
point numbers are little-endian (that is: the least significant bits of the fraction are in the
byte closest to the beginning of the file, while the sign bit and the most significant bits of
the exponent are in the byte closest to the end of the file).

The following table lists the names and sizes of OpenEXR's floating-point data types:

name size in
bytes

half 2

float 4
double 8

4

Text
Text strings are represented as sequences of 1-byte characters of type char. Depending on
the context, either the end of a string is indicated by a null character (0x00), or the length
of the string is indicated by an int that precedes the string.

Packing
Data in an OpenEXR file are densely packed; the file contains no "padding". For example,
consider the following C struct:

struct SI
{
 short s;
 int i;
};

On most computers, the in-memory representation of an SI object occupies 8 bytes: 2 bytes
for s, 2 padding bytes to ensure four-byte alignment of i, and 4 bytes for i. In an OpenEXR
file the same object would consume only 6 bytes: 2 bytes for s and 4 bytes for i. The 2
padding bytes are not stored in the file.

File Layout

High-Level Layout
Depending on whether the pixels in an OpenEXR file are stored as scan lines or as tiles, the
file consists of the following components:

componen
t

single-part file with... multi-part file:

scan lines: tiles:

one magic number magic number magic number

two version field version field version field

three header header part 0 header
[part 1 header]
...
[<empty header>]

four line offset table tile offset table part 0 chunk offset table
[part 1 chunk offset table]
...

five scan line blocks tiles chunks

It is the version field part which indicates whether the file is single or multi-part and
whether the file contains deep data. “Chunk” is a general term to describe blocks of pixel
data. A chunk can be a scan line block, a tile or deep data (scan line or tile).

5

Deep data has no unique component structure of its own, but uses the structure that the
file would have if it did not have deep data in it.

Comparison between Single-Part and Multi-Part File Layouts
Multi-part files have the same high level structure as single-part OpenEXR files, except the
header, offset table and chunk components can have any number (two or more) parts.
There must be the same number of headers as offset tables, and they must be in the same
order. In addition, the header component of a multi-part file must end with a null byte
(0x00). In multi-part files, each chunk contains a field that indicates which part's data it
contains.

Components One and Two: Magic Number and Version
Field

Magic Number
The magic number, of type int, is always 20000630 (decimal). It allows file readers to
distinguish OpenEXR files from other files, since the first four bytes of an OpenEXR file are
always 0x76, 0x2f, 0x31 and 0x01.

6

Version Field
The version field, of type int, is the four-byte group following the magic number, and it is
treated as two separate bit fields.

7

Byte/bit
position

Description and notes

first byte
(bits 0
through 7)

The 8 least significant bits, they contain the file format version number.
The current OpenEXR version number is version 2.

8

second,
third and
fourth bytes
(bits 8
through 31)

The 24 most significant bits, these are treated as a set of boolean flags.

Bit 9 (the
single tile bit)
bit mask:
0x200

Indicates
that this is a
single-part
file which is
in tiled
format.

If bit 9 is 1:
• this is a regular single-part image and

the pixels are stored as tiles, and
• bits 11 and 12 must be 0.

If bit 9 is 0, and bits 11 and 12 are also 0:
the data is stored as regular single-part
scan line file.
This bit is for backwards compatibility
with older libraries: it is only set when
there is one "normal" tiled image in the
file.

Bit 10 (the
long name bit)
bit mask:
0x400

Indicates
whether the
file contains
“long
names”.

If bit 10 is 1, the maximum length is 255
bytes.
If bit 10 is 0, the maximum length of
attribute names, attribute type names and
channel names is 31 bytes.

Bit 11 (the
non-image bit)
bit mask:
0x800

Indicates
whether the
file contains
any “non-
image
parts” (deep
data).

If bit 11 is 1, there is at least one part
which is not a regular scan line image or
regular tiled image (that is, it is a deep
format).
If bit 11 is 0, all parts are entirely single or
multiple scan line or tiled images.
New in 2.0.

Bit 12 (the
multipart bit)
bit mask:
0x1000

Indicates
the file is a
multi-part
file.

If bit 12 is 1:
• the file does not contain exactly 1 part

and the 'end of header' byte must be
included at the end of each header
part, and

• the part number fields must be added
to the chunks.

If bit 12 is 0, this is not a multi-part file and
the 'end of header' byte and part number
fields in chunks must be omitted.
New in 2.0.

The remaining 19 flags in the version field are currently unused and
should be set to 0.

9

Version field, valid values
All valid combinations of the version field bits are as follows:

Description Compatible
with

bit 9 bit
11

bit
12

Single-part scan line.
One normal scan line image.

All versions of
OpenEXR.

0 0 0

Single-part tile.
One normal tiled image.

All versions of
OpenEXR.

1 0 0

Multi-part (new in 2.0).
Multiple normal images (scan
line and/or tiled).

OpenEXR 2.0. 0 0 1

Single-part deep data (new in
2.0).
One deep tile or deep scan line
part.

OpenEXR 2.0. 0 1 0

Multi-part deep data (new in
2.0).
Multiple parts (any
combination of: tiles, scan
lines, deep tiles and/or deep
scan lines).

OpenEXR 2.0. 0 1 1

Note: The version field bits define what capabilities must be available in the software so it
can handle the file, rather than the exact format of the file. While the 9 and 11 bit settings
must agree with the type attributes of all parts, in OpenEXR 2.0 the data format of each
type is definitively set by the type attribute in that part's header alone.

Component Three: Header

Structure

Single-part file
The header component of the single-part file holds a single header (for single-part files).

Each header is a sequence of attributes ended by a null byte.

The file has the same structure as a 1.7 file. That is, the multi-part bit (bit 12) must be 0,
and the single null byte that signals the end of the headers must be omitted. This structure
also applies to single-part deep data files.

10

Multi-part file (new in 2.0)
The header component of a multi-part file holds a set of headers, with a separate header
for each part (in multi-part files) and a null byte signalling the end of the header
component:

part 0 header
[part 1 header]
...
[<empty header>]

Each header is a sequence of attributes ended by a null byte.

The multipart bit (bit 12) must be set to 1, and the list of headers must be followed by a
single null byte (0x00) (that is, an empty header).

Attribute Layout
The layout of an attribute is as follows:

attribute name

attribute type

attribute size

attribute value

The attribute name and the attribute type are null-terminated text strings. Excluding
the null byte, the name and type must each be as least 1 byte and at most :

• 31 bytes long (if bit 10 is set to 0), or

• 255 bytes long (if bit 10 is set to 1).

Both single-part and multi-part files use the same attribute types.

The attribute size, of type int, indicates the size (in bytes) of the attribute value.

The layout of the attribute value depends on the attribute type. The IlmImf library
predefines several different attribute types (see page 19). Application programs can define
and store additional attribute types.

Header Attributes (All Files)
The header of every OpenEXR file must contain at least the following attributes:

attribute name attribute type
channels chlist

compression compression

dataWindow box2i

displayWindow box2i

lineOrder lineOrder

11

attribute name attribute type
pixelAspectRatio float

screenWindowCenter v2f

screenWindowWidth float

For descriptions of what these attributes are for, see the Technical Introduction to
OpenEXR.

Tile Header Attribute
This attributes is required in the header for all files which contain one or more tiles:

attribute name attribute type Notes
tiles tiledesc Determines the size of the tiles and the

number of resolution levels in the file.
Note: The IlmImf library ignores tile
description attributes in scan line based
files. The decision whether the file
contains scan lines or tiles is based on
the value of bit 9 in the file's version
field, not on the presence of a tile
description attribute.

Multi-View Header Attribute
This attribute can be used in the header for multi-part files:

attribute name attribute type Notes
view text

Multi-Part and Deep Data Header Attributes (New in 2.0)
These attributes are required in the header for all multi-part and/or deep data OpenEXR
files.

attribute name attribute type Notes
name string Required if either the multipart bit (12)

or the non-image bit (11) is set.

12

attribute name attribute type Notes
type string Required if either the multipart bit (12)

or the non-image bit (11) is set.
Set to one of:

• scanlineimage
• tiledimage
• deepscanline, or
• deeptile.

Note: This value must agree with the
version field's tile bit (9) and non-image
(deep data) bit (11) settings.

version int This document describes version 1 data
for all part types.
version is required for deep data
(deepscanline and deeptile) parts. If not
specified for other parts, assume
version=1.

chunkCount int Required if either the multipart bit (12)
or the non-image bit (11) is set.

tiles tileDesc Required for parts of type tiledimage
and deeptile.

For more information about the standard OpenEXR attributes and optional attributes such
as preview images, see the OpenEXR File Layout document.

Deep Data Header Attributes (New in 2.0)
These attributes are required in the header for all files which contain deep data
(deepscanline or deeptile):

attribute name attribute type Notes
tiles tileDesc Required for parts of type tiledimage

and deeptile.

13

attribute name attribute type Notes
maxSamplesPerPixel int Required for deep data (deepscanline

and deeptile) parts.
Note: Since the value of
maxSamplesPerPixel maybe be
unknown at the time of opening the file,
the value “-1” is written to the file to
indicate an unknown value. When the
file is closed, this will be overwritten
with the correct value. If file writing
does not complete correctly due to an
error, the value -1 will remain. In this
case, the value must be derived by
decoding each chunk in the part.

version int Should be set to 1. It will be changed if
the format is updated.

type string Must be set to deepscanline or
deeptile.

For information about channel layout and a list of reserved channel names, see the
Technical Introduction to OpenEXR document, Channel Names section.

Component Four: Offset Tables

Offset Tables
An offset table allows random access to pixel data chunks. An offset table is a sequence of
offsets, with one offset per chunk. Each offset (of type unsigned long) indicates the
distance, in bytes, between the start of the file and the start of the chunk.

Chunks can be of any of the four data types.

Offset Table Size
The number of entries in an offset table is defined in one of two ways:

1. If the multipart (12) bit is unset and the chunkCount is not present, the number of
entries in the chunk table is computed using the dataWindow and tileDesc
attributes and the compression format.

2. If the multipart (12) bit is set, the header must contain a chunkCount attribute
(which indicates the size of the table and the number of chunks).

14

Scan Lines
For scan line blocks, the line offset table is a sequence of scan line offsets, with one offset
per scan line block. In the table, scan line offsets are ordered according to increasing scan
line y coordinates.

Tiles
For tiles, the offset table is a sequence of tile offsets, one offset per tile. In the table, scan
line offsets are sorted the same way as tiles in INCREASING_Y order.

Multi-part (New in 2.0)
For multi-part files, each part defined in the header component has a corresponding
chunk offset table.

Component Five: Pixel data

Chunk Layout (New in 2.0)
A “chunk” is a general term for a pixel data block. The scan line and tile images have the
same format that they did in OpenEXR 1.7. OpenEXR 2.0 introduces two new types (deep
scan line and deep tile).

The layout of each chunk is as follows:

[part number] (if multi-part bit is set)

chunk data

The part number (of type unsigned long) is only present in multi-part files. It indicates
which part this chunk belongs to. 0 indicates the chunk belongs to the part defined by the
first header and the first chunk offset table. The part number is omitted if the multi-part
bit (12) is not set (this saves space and enforces backwards compatibility to software which
does not support multi-part files).

The chunk data is dependent on the type attribute - but (other than the part number) has
the same structure as a single-part file of the same format:

part type type attribute Notes

scan line indicated by a type
attribute of
“scanlineimage”

Each chunk stores a scan line block, with
the minimum y coordinate of the scan
line(s) within the chunk.

See Regular scan line image block layout,
on page 16.

15

part type type attribute Notes

tiled indicated by a type
attribute of “tiledimage”

See Regular image tile layout, on page 17.

deep scan
line

indicated by a type
attribute of
“deepscanline”

See Deep scan line layout, on page 18.

deep tile indicated by a type
attribute of “deeptile”

See Deep tiled layout, on page 18.

For more information about data types, see page Error: Reference source not found.

Regular Scan Line Blocks
For scan line images and deep scan line images, one or more scan lines may be stored
together as a scan line block. The number of scan lines per block depends on how the
pixel data are compressed:

compression method number of scan lines per
block

NO_COMPRESSION 1
RLE_COMPRESSION 1

ZIPS_COMPRESSION 1
ZIP_COMPRESSION 16

PIZ_COMPRESSION 32
PXR24_COMPRESSION 16

B44_COMPRESSION 32
B44A_COMPRESSION 32

Each scan line block has a y coordinate of type int. The block's y coordinate is equal to
the pixel space y coordinate of the top scan line in the block. The top scan line block in the
image is aligned with the top edge of the data window (that is, the y coordinate of the top
scan line block is equal to the data window's minimum y).

If the height of the image's data window is not a multiple of the number of scan lines per
block, then the block that contains the bottom scan line contains fewer scan lines than the
other blocks.

Regular scan line image block layout
The layout of a regular image scan line block is as follows:

[part number] (if multipart bit is set)

y coordinate

16

[part number] (if multipart bit is set)

pixel data size

pixel data

The pixel data size, of type int, indicates the number of bytes occupied by the actual pixel
data.

Within the pixel data, scan lines are stored top to bottom. Each scan line is contiguous,
and within a scan line the data for each channel are contiguous. Channels are stored in
alphabetical order, according to channel names. Within a channel, pixels are stored left to
right.

Compressed data
If the file's compression method is NO_COMPRESSION, then the original, uncompressed pixel
data are stored directly in the file. Otherwise, the uncompressed pixels are fed to the
appropriate compressor, and either the compressed or the uncompressed data are stored
in the file, whichever is smaller.

The layout of the compressed data depends on which compression method was applied.
The compressed formats are not described here. For information on the compressed data
formats, see the source code for the IlmImf library.

Regular ImageTiles

Regular image tile layout
The layout of a regular image tile is as follows:

[part number] (if multi-part bit is set)

tile coordinates

pixel data size

pixel data

The tile coordinates, a sequence of four ints (tileX, tileY, levelX, levelY) indicates the tile's
position and resolution level. The pixel data size, of type int, indicates the number of
bytes occupied by the pixel data.

The pixel data in a tile are laid out in the same way as in a scan line block, but the length
of the scan lines is equal to the width of the tile, and the number of scan lines is equal to
the height of the tile.

If the width of a resolution level is not a multiple of the file's tile width, then the tiles at the
right edge of that resolution level have shorter scan lines. Similarly, if the height of a
resolution level is not a multiple of the file's tile height, then tiles at the bottom edge of the
resolution level have fewer scan lines.

17

Deep Data (New in 2.0)
Deep images store an arbitrarily long list of data at each pixel location (each pixel contains
a list of samples, and each sample contains a fixed number of channels).

Deep scan line layout
Deep scan line images are indicated by a type attribute of “deepscanline”. Each chunk of
deep scan line data is a single scan line of data. The data in each chunk is laid out as
follows:

[part number] (if multipart bit is set)

y coordinate

packed size of pixel offset table

packed size of sample data

unpacked size of sample data

compressed pixel offset table

compressed sample data

The unpacked size of the sample data (an unsigned long) is the size of the deep sample
data once it is unpacked. It is necessary to specify the unpacked size since the data may be
arbitrarily large (so generally cannot otherwise be determined without decompressing the
data first).

Deep tiled layout
Tiled images are indicated by a type attribute of “deeptile”. Each chunk of deep tile data is
a single tile. The data in each chunk is laid out as follows:

[part number] (if multipart bit is set)

tile coordinates

packed size of pixel offset table

packed size of sample data

unpacked size of sample data

compressed pixel offset table

compressed sample data

The unpacked size of the sample data (an unsigned long) is the size of the deep data
once it is unpacked. It is necessary to specify the unpacked size since the data may be
arbitrarily large (so generally cannot otherwise be determined without decompressing the
data first).

The pixel offset table is a list of ints, one for each column within the dataWindow. Each
entry n in the table indicates the total number of samples required to store the pixel in n

18

as well as all pixels to the left of it. Thus, the first samples stored in each channel of the
pixel data are for the pixel in column 0, which contains table[1] samples. Each channel
contains table[width-1] samples in total.

Unpacked deep data chunks
When decompressed, the unpacked chunk consists of the channel data stored in a non-
interleaved fashion:

pixel sample data for channel 0
pixel sample data for channel 1
pixel sample data for channel ...
pixel sample data for channel n

Exception: For ZIP_COMPRESSION only there will be up to 16 scanlines in the packed
sample data block:

pixel sample data for channel 0 for scanline 0
pixel sample data for channel 1 for scanline 0
pixel sample data for channel ... for scanline 0
pixel sample data for channel n for scanline 0

pixel sample data for channel 0 for scanline 1
pixel sample data for channel 1 for scanline 1
pixel sample data for channel ... for scanline 1
pixel sample data for channel n for scanline 1

...

Deep data compression
The following compression schemes are the only ones permitted for deep data:

compression method number of scan lines per
block

NO_COMPRESSION 1

RLE_COMPRESSION 1
ZIPS_COMPRESSION 1

ZIP_COMPRESSION 16

Predefined Attribute Types

The IlmImf library predefines the following attribute types:

type name data

box2i Four ints: xMin, yMin, xMax, yMax

19

type name data

box2f Four floats: xMin, yMin, xMax, yMax

chlist A sequence of channels followed by a null byte (0x00).
Channel layout:

name zero-terminated string, from 1 to 255 bytes long

pixel type int, possible values are:
 UINT = 0
 HALF = 1
 FLOAT = 2

pLinear unsigned char, possible values are 0 and 1

reserved three chars, should be zero

xSampling int

ySampling int

chromaticities Eight floats: redX, redY, greenX, greenY, blueX, blueY, whiteX,
whiteY

compression unsigned char, possible values are
 NO_COMPRESSION = 0
 RLE_COMPRESSION = 1
 ZIPS_COMPRESSION = 2
 ZIP_COMPRESSION = 3
 PIZ_COMPRESSION = 4
 PXR24_COMPRESSION = 5
 B44_COMPRESSION = 6
 B44A_COMPRESSION = 7

double double

envmap unsigned char, possible values are:
 ENVMAP_LATLONG = 0
 ENVMAP_CUBE = 1

float float

int int

keycode Seven ints: filmMfcCode, filmType, prefix, count, perfOffset,
perfsPerFrame, perfsPerCount

lineOrder unsigned char, possible values are:
 INCREASING_Y = 0
 DECREASING_Y = 1
 RANDOM_Y = 2

20

type name data

m33f 9 floats

m44f 16 floats

preview Two unsigned ints, width and height, followed by 4×width×height
unsigned chars of pixel data.
Scan lines are stored top to bottom; within a scan line pixels are
stored from left to right. A pixel consists of four unsigned chars, R,
G, B, A.

rational An int, followed by an unsigned int.

string String length, of type int, followed by a sequence of chars.

stringvector A sequence of zero or more text strings. Each string is represented
as a string length, of type int, followed by a sequence of chars. The
number of strings can be inferred from the total attribute size (see
the Attribute Layout section, on page 11).

tiledesc Two unsigned ints: xSize, ySize, followed by mode, of type
unsigned char, where

 mode = levelMode + roundingMode×16

Possible values for levelMode:
 ONE_LEVEL = 0
 MIPMAP_LEVELS = 1
 RIPMAP_LEVELS = 2

Possible values for roundingMode:
 ROUND_DOWN = 0
 ROUND_UP = 1

timecode Two unsigned ints: timeAndFlags, userData.

v2i Two ints

v2f Two floats

v3i Three ints.

v3f Three floats.

21

Sample File

The following is an annotated byte-by-byte listing of a complete OpenEXR file. The file
contains a scan-line based image with four by three pixels. The image has two channels:
G, of type HALF, and Z, of type FLOAT. The pixel data are not compressed. The entire file is
415 bytes long.

The first line of text in each of the gray boxes below lists up to 16 bytes of the file in
hexadecimal notation. The second line in each box shows how the bytes are grouped into
integers, floating-point numbers and text strings. The third and fourth lines indicate how
those basic objects form compound objects such as attributes or the line offset table.

 76 2f 31 01 02 00 00 00 63 68 61 6e 6e 65 6c 73

 20000630 | 2 | c h a n n e l s

 magic number | version, flags | attribute name

 | | start of header

 00 63 68 6c 69 73 74 00 25 00 00 00 47 00 01 00

 \0 | c h l i s t \0 | 37 | G \0 | HALF

 | attribute type | attribute size | attribute value

 00 00 00 00 00 00 01 00 00 00 01 00 00 00 5a 00

 | 0 | 0 | 1 | 1 | Z \0 |

 02 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00

 FLOAT | 0 | 0 | 1 | 1 |

 |

 00 63 6f 6d 70 72 65 73 73 69 6f 6e 00 63 6f 6d

 \0 | c o m p r e s s i o n \0 | c o m

 | attribute name | attribute type

22

 70 72 65 73 73 69 6f 6e 00 01 00 00 00 00 64 61

 p r e s s i o n \0 | 1 | NONE| d a

 | attribute size |value|

 74 61 57 69 6e 64 6f 77 00 62 6f 78 32 69 00 10

 t a W i n d o w \0 | b o x 2 i \0 |

 attribute name | attribute type |

 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 02

 16 | 0 | 0 | 3 |

attribute size| attribute value

 00 00 00 64 69 73 70 6c 61 79 57 69 6e 64 6f 77

 2 | d i s p l a y W i n d o w

 | attribute name

 00 62 6f 78 32 69 00 10 00 00 00 00 00 00 00 00

 \0 | b o x 2 i \0 | 16 | 0 |

 | attribute type | attribute size | attribute value

 00 00 00 03 00 00 00 02 00 00 00 6c 69 6e 65 4f

 0 | 3 | 2 | l i n e O

 | attribute name

 72 64 65 72 00 6c 69 6e 65 4f 72 64 65 72 00 01

 r d e r \0 | l i n e O r d e r \0 |

 | attribute type |

 00 00 00 00 70 69 78 65 6c 41 73 70 65 63 74 52

23

 1 |INCY | p i x e l A s p e c t R

attribute size|value| attribute name

 61 74 69 6f 00 66 6c 6f 61 74 00 04 00 00 00 00

 a t i o \0 | f l o a t \0 | 4 |

 | attribute type | attribute size |

 00 80 3f 73 63 72 65 65 6e 57 69 6e 64 6f 77 43

 1.0 | s c r e e n W i n d o w C

attribute value| attribute name

 65 6e 74 65 72 00 76 32 66 00 08 00 00 00 00 00

 e n t e r \0 | v 2 f \0 | 8 |

 | attribute type | attribute size |

 00 00 00 00 00 00 73 63 72 65 65 6e 57 69 6e 64

0.0 | 0.0 | s c r e e n W i n d

attribute value | attribute name

 6f 77 57 69 64 74 68 00 66 6c 6f 61 74 00 04 00

 o w W i d t h \0 | f l o a t \0 |

 | attribute type |

 00 00 00 00 80 3f 00 3f 01 00 00 00 00 00 00 5f

4 | 1.0 | \0 | 319 |

size | attribute value | | offset of scan line 0 |

 end of header | start of scan line offset table

 01 00 00 00 00 00 00 7f 01 00 00 00 00 00 00 00

 351 | 383 |

24

 offset of scan line 1 | offset of scan line 2 |

 end of scan line offset table |

 00 00 00 18 00 00 00 00 00 54 29 d5 35 e8 2d 5c

 0 | 24 | 0.000 | 0.042 | 0.365 | 0.092 |

 y | pixel data size | pixel data for G channel |

 scan line 0

 28 81 3a cf e1 34 3e 8b 0b bb 3d 89 74 f9 3e 01

0.000985395 | 0.176643 | 0.0913306 | 0.487217 |

pixel data for Z channel |

 |

 00 00 00 18 00 00 00 37 38 76 33 74 3b 73 38 7f

 1 | 24 | 0.527 | 0.233 | 0.932 | 0.556 |

 y | pixel data size | pixel data for G channel |

 scan line 1

 ab e8 3e 8a cf 54 3f 5b 6c 11 3f 20 35 50 3d 02

0.454433 | 0.831292 | 0.56806 | 0.0508319 |

pixel data for Z channel |

 |

 00 00 00 18 00 00 00 23 3a 0a 34 02 3b 5d 3b 38

 2 | 24 | 0.767 | 0.252 | 0.876 | 0.920 |

 y | pixel data size | pixel data for G channel |

 scan line 2

 f3 9a 3c 4d ad 98 3e 1c 14 08 3f 4c f3 03 3f

0.0189148 | 0.298197 | 0.531557 | 0.515431

pixel data for Z channel

 end of file

25

	Document Purpose and Audience
	Backwards Compatibility and New or Changed Functionality
	OpenEXR Backwards Compatibility (1.7 and 2.0)
	New Features for OpenEXR 2.0: Multi-Part and Deep Data

	Basic Data Types
	Integers
	Floating-Point Numbers
	Text
	Packing

	File Layout
	High-Level Layout
	Comparison between Single-Part and Multi-Part File Layouts

	Components One and Two: Magic Number and Version Field
	Magic Number
	Version Field
	Version field, valid values

	Component Three: Header
	Structure
	Single-part file
	Multi-part file (new in 2.0)

	Attribute Layout
	Header Attributes (All Files)
	Tile Header Attribute
	Multi-View Header Attribute
	Multi-Part and Deep Data Header Attributes (New in 2.0)
	Deep Data Header Attributes (New in 2.0)

	Component Four: Offset Tables
	Offset Tables
	Offset Table Size
	Scan Lines
	Tiles
	Multi-part (New in 2.0)

	Component Five: Pixel data
	Chunk Layout (New in 2.0)
	Regular Scan Line Blocks
	Regular scan line image block layout
	Compressed data

	Regular ImageTiles
	Regular image tile layout

	Deep Data (New in 2.0)
	Deep scan line layout
	Deep tiled layout
	Unpacked deep data chunks
	Deep data compression

	Predefined Attribute Types
	Sample File

