
Technical Introduction to OpenEXR
Last Update: Oct 29, 2019

Florian Kainz, Rod Bogart

Industrial Light & Magic

Document Purpose and Audience

OpenEXR is an open-source high-dynamic-range image file format that was developed by
Industrial Light & Magic. This document presents a brief overview of OpenEXR 2.0 and
explains concepts that are specific to this format.

Table of Contents
Document Purpose and Audience...1
Features of OpenEXR..2

Features Which Have Been Added in 2.0..4
Overview of the OpenEXR File Format..4

Definitions and Terminology..4
File Structure..11
Data Compression..16

Luminance/Chroma Images...18
The HALF Data Type...19
What's in the Numbers?..20
Recommendations...21

RGB Color...21
CIE XYZ Color..21
Channel Names..22
Standard Attributes...23
Premultiplied vs. Un-Premultiplied Color Channels..24

Credits...24

1

Features of OpenEXR

Starting in 1999, Industrial Light & Magic developed OpenEXR, a high-dynamic-range
image file format for use in digital visual effects production. In early 2003, after using and
refining the file format for two years, ILM released OpenEXR as an open-source C++
library.

A unique combination of features makes OpenEXR a good fit for high-quality image
processing and storage applications:

high dynamic range Pixel data are stored as 16-bit or 32-bit floating-point numbers.
With 16 bits, the representable dynamic range is significantly
higher than the range of most image capture devices: 109 or 30
f-stops without loss of precision, and an additional 10 f-stops at
the low end with some loss of precision. Most 8-bit file formats
have around 7 to 10 stops.

good color resolution With 16-bit floating-point numbers, color resolution is 1024
steps per f-stop, as opposed to somewhere around 20 to 70 steps
per f-stop for most 8-bit file formats. Even after significant
processing (for example, extensive color correction) images
tend to show no noticeable color banding.

compatible with
graphics hardware

The 16-bit floating-point data format is fully compatible with
the 16-bit frame-buffer data format used in some new graphics
hardware. Images can be transferred back and forth between
an OpenEXR file and a 16-bit floating-point frame buffer
without losing data.
Most of the data compression methods currently implemented
in OpenEXR are lossless; repeatedly compressing and
uncompressing an image does not change the image data. With
the lossless compression methods, photographic images with
significant amounts of film grain tend to shrink to somewhere
between 35 and 55 percent of their uncompressed size.
OpenEXR also supports lossy compression, which tends to
shrink image files more than lossless compression, but doesn't
preserve the image data exactly. New lossless and lossy
compression schemes can be added in the future.

arbitrary image
channels

OpenEXR images can contain an arbitrary number and
combination of image channels, for example red, green, blue,
and alpha; luminance and sub-sampled chroma channels;
depth, surface normal directions, or motion vectors.

2

scan line and tiled
images, multi-
resolution images

Pixels in an OpenEXR file can be stored either as scan lines or as
tiles. Tiled image files allow random-access to rectangular sub-
regions of an image. Multiple versions of a tiled image, each
with a different resolution, can be stored in a single multi-
resolution OpenEXR file.
Multi-resolution images, often called "mipmaps" or "ripmaps",
are commonly used as texture maps in 3D rendering programs
to accelerate filtering during texture lookup, or for operations
like stereo image matching. Tiled multiresultion images are
also useful for implementing fast zooming and panning in
programs that interactively display very large images.

ability to store
additional data

Often it is necessary to annotate images with additional data;
for example, color timing information, process tracking data, or
camera position and view direction. OpenEXR allows storing of
an arbitrary number of extra attributes, of arbitrary type, in an
image file. Software that reads OpenEXR files ignores attributes
it does not understand.

easy-to-use C++ and C
programming
interfaces

In order to make writing and reading OpenEXR files easy, the
file format was designed together with a C++ programming
interface. Two levels of access to image files are provided: a
fully general interface for writing and reading files with
arbitrary sets of image channels, and a specialized interface for
the most common case (red, green, blue, and alpha channels, or
some subset of those). Additionally, a C-callable version of the
programming interface supports reading and writing OpenEXR
files from programs written in C.
Many application programs expect image files to be scan line
based. With the OpenEXR programming interface, applications
that cannot handle tiled images can treat all OpenEXR files as if
they were scan line based; the interface automatically converts
tiles to scan lines.
The C++ and C interfaces are implemented in the open-source
IlmImf library.

fast multi-threaded
file reading and
writing

The IlmImf library supports multi-threaded reading or writing
of an OpenEXR image file: while one thread performs low-level
file input or output, multiple other threads simultaneously
encode or decode individual pieces of the file.

portability The OpenEXR file format is hardware and operating system
independent. While implementing the C and C++ programming
interfaces, an effort was made to use only language features
and library functions that comply with the C and C++ ISO
standards.

3

multi-view A “multi-view” image shows the same scene from multiple
different points of view. A common application is 3D stereo
imagery, where a left-eye and a right-eye view of a scene are
stored in a single file.
For more information about multi-view files, see Storing Multi-
View Images in OpenEXR Files.

Features Which Have Been Added in 2.0
For the 2.0 release of OpenEXR, these features have been added:

deep data Support for a new data type has been added: deep data. Deep
images store an arbitrarily long list of data at each pixel
location. This is different from multichannel or 'deep channel
images' which can store a potentially large, but fixed, amount of
information at each pixel. In a deep image, each pixel stores a
different amount of data.
This allows for more accurate compositing of objects which
occlude each other, and provides a method for storing opacity
data in the z direction (particularly useful for stereo images
which have atmospheric effects such fog).

multi-part Multi-part files allow for storing multiple images in one
OpenEXR file. One important application is to store layers of
channels separately. This allows for faster access when only a
subset of the channels needs reading. It also permits layers to
have differing data layout (for example, for different
compression, or different layout) and different data windows.
It also allows some layers to be stored as deep data and others
as regular images. With multi-part files, different views are
stored in different parts.

Overview of the OpenEXR File Format

Definitions and Terminology

Pixel space
Pixel space is a 2D coordinate system with x increasing from left to right and y increasing
from top to bottom. Pixels are data samples, taken at integer coordinate locations in pixel
space.

4

Display window
The boundaries of an OpenEXR image are given as an axis-parallel rectangular region in
pixel space, the display window. The display window is defined by the positions of the
pixels in the upper left and lower right corners, (xmin, ymin) and (xmax, ymax).

Data window
An OpenEXR file may not have pixel data for all the pixels in the display window, or the
file may have pixel data beyond the boundaries of the display window. The region for
which pixel data are available is defined by a second axis-parallel rectangle in pixel space,
the data window.

Examples:

1. Assume that we are producing a movie with a resolution of 1920 by 1080 pixels.
The display window for all frames of the movie is (0, 0) - (1919, 1079). For most
images, in particular finished frames that will be recorded on film, the data
window is the same as the display window, but for some images that are used in
producing the finished frames, the data window differs from the display window.

2. For a background plate that will be heavily post-processed, extra pixels, beyond
the edge of the film frame, are recorded and the data window is set to (-100, -100) -
(2019, 1179). The extra pixels are not normally displayed. Their existence allows
operations such as large-kernel blurs or simulated camera shake to avoid edge
artifacts.

3. While tweaking a computer-generated element, an artist repeatedly renders the
same frame. To save time, the artist renders only a small region of interest close to
the center of the image. The data window of the image is set to (1000, 400) -
(1400, 800). When the image is displayed, the display program fills the area outside
of the data window with some default color.

5

Image channels and sampling rates
Every OpenEXR image contains one or more image channels. Each channel has a name, a
data type, and x and y sampling rates.

The channel's name is a text string, for example "R", "Z" or "yVelocity". The name tells
programs that read the image file how to interpret the data in the channel.

For a few channel names, interpretation of the data is predefined:

name interpretation

R red intensity

G green intensity

B blue intensity

A alpha/opacity: 0.0 means the pixel is transparent; 1.0 means the
pixel is opaque. By convention, all color channels are
premultiplied by alpha, so that "foreground + (1-
alpha) × background" performs a correct "over" operation. (See
Premultiplied vs. Un-Premultiplied Color Channels, on page 19.)

Three channel data types are currently supported:

type
name

description

HALF 16-bit floating-point numbers; for regular image data. (See The
HALF Data Type, on page 23.)

FLOAT 32-bit IEEE-754 floating-point numbers; used where the range or
precision of 16-bit number is not sufficient (for example, depth
channels).

6

type
name

description

UINT 32-bit unsigned integers; for discrete per-pixel data such as object
identifiers.

The channel's x and y sampling rates, sx and sy, determine for which of the pixels in the
image's data window data are stored in the file. Data for a pixel at pixel space coordinates
(x, y) are stored only if

x mod sx = 0

and

y mod sy = 0.

For RGBA (red, green, blue, alpha) images, sx and sy are 1 for all channels, and each
channel contains data for every pixel. For other types of images, some channels may be
sub-sampled. For example, in images with one luminance channel, Y, and two croma
channels, RY and BY, sx and sy would be 1 for the Y channel, but for the RY and BY
channels, sx and sy might be set to 2, indicating that chroma data are only given for one out
of every four pixels. (See also Luminance/Chroma Images, on page 18.)

Projection, camera coordinate system and screen window
Many images are generated by a perspective projection. We assume that a camera is
located at the origin, O, of a 3D camera coordinate system. The camera looks along the
positive z axis. The positive x and y axes correspond to the camera's "left" and "up"
directions. The 3D scene is projected onto the z = 1 plane. The image recorded by the
camera is bounded by a rectangle, the screen window. In pixel space, the screen window
corresponds to the file's display window. In the file, the size and position of the screen
window are specified by the x and y coordinates of the window's center, C, and by the
window's width, W. The screen window's height can be derived from C, W, the display
window and the pixel aspect ratio.

7

Scan lines
In scan line based files, the image's pixels are stored in horizontal rows, or scan lines. A
file whose data window is (xmin, ymin) - (xmax, ymax) contains ymax - ymin + 1 scan lines. Each
scan line contains xmax - xmin + 1 pixels.

Scan line based files cannot contain multi-resolution images.

Tiles
In tiled files, the image is subdivided into an array of smaller rectangles, called tiles. Each
tile contains px by py pixels. An image whose data window is (xmin, ymin) - (xmax, ymax)
contains ceil(w/px) by ceil(h/py) tiles, where w and h are the width and height of the data
window:

w = xmax - xmin + 1

h = ymax - ymin + 1

The upper left corner of the upper left tile is aligned with the upper left corner of the data
window, at (xmin, ymin). The rightmost column and the bottom row of tiles may extend
outside the data window. If a tile contains pixels that are outside the data window, then
those extra pixels are discarded when the tile is stored in the file.

8

Levels and level modes
A single tiled OpenEXR files may contain multiple versions of the same image, each with a
different resolution. Each version is called a level. The number of levels in a file and their
resolutions depend on the file's level mode. Currently, OpenEXR supports three level
modes:

mode name description

ONE_LEVEL The file contains only a single full-resolution level. A
tiled ONE_LEVEL file is equivalent to a scan line based
file; the only difference is that pixels are accessed by tile
rather than by scan line.

MIPMAP_LEVELS The file contains multiple versions of the image. Each
successive level is half the resolution of the previous level
in both dimensions. The lowest-resolution level contains
only a single pixel. For example, if the first level, with
full resolution, contains 16×8 pixels, then the file contains
four more levels with 8×4, 4×2, 2×1, and 1×1 pixels
respectively.

RIPMAP_LEVELS Like MIPMAP_LEVELS, but with more levels. The levels
include all combinations of reducing the resolution of the
first level by powers of two independently in both
dimensions. For example, if the first level contains 4×4
pixels, then the file contains eight more levels, with the
following resolutions:

2×4 1×4

4×2 2×2 1×2

4×1 2×1 1×1

9

Level numbers, level size and rounding mode
Levels are identified by level numbers. A level number is a pair of integers, (lx, ly). Level
(0,0) is the highest-resolution level, with w by h pixels. Level (lx, ly) contains

rf(w
2lx

)

 by

rf h
2l y



pixels, where rf(x) is a rounding function, either floor(x) or ceil(x), depending on the file's
level size rounding mode (ROUND_DOWN or ROUND_UP).

MIPMAP_LEVELS files contain only levels where lx = ly. ONE_LEVEL files contain only level
(0,0).

Examples:

1. The levels in a RIPMAP_LEVELS file whose highest-resolution level contains 4 by 4
pixels have the following level numbers:

width

4 2 1

4 (0,0) (1,0) (2,0)

heigh
t 2

(0,1) (1,1) (2,1)

1 (0,2) (1,2) (2,2)

In an equivalent MIPMAP_LEVELS file, only levels (0,0), (1,1), and (2,2) are present.

2. In a MIPMAP_LEVELS file with a highest-resolution level of 15 by 17 pixels, the
resolutions of the remaining levels depend on the level size rounding mode:

rounding mode level resolutions

ROUND_DOWN 15×17, 7×8, 3×4, 1×2, 1×1

ROUND_UP 15×17, 8×9, 4×5, 2×3, 1×2, 1×1

Tile coordinates
In a file with multiple levels, tiles have the same size, regardless of their level. Lower-
resolution levels contain fewer, rather than smaller, tiles. Within a level, a tile is identified
by a pair of integer tile coordinates, which specify the tile's column and row. The upper
left tile has coordinates (0,0). In order to identify a tile uniquely in a multi-resolution file,
both the tile coordinates and the level number are needed.

10

View
A view is a set of image channels, identified by naming convention and the view header
attribute. This is usually used to store stereo files, with one view for each eye. Views can
be stored in separate files, or together in a single file.

Part (New in 2.0)
A part is made up of a header and an associated offset table and pixels. In a single-part
file, there is one header, one offset table, and corresponding pixel data. In a multi-part file,
there can be two or more parts - with each part having one header, one offset table and
corresponding pixel data.

Note: This is different from a multi-view file, though you can store views as separate parts
if you wish.

Deep data (New in 2.0)
OpenEXR 2.0 supports deep data. Deep data images store an arbitrarily long list of data at
each pixel location. This is different from multichannel or 'deep channel images' which
can store a potentially large, but fixed, amount of information at each pixel. In a deep
image, each pixel stores a different amount of data.

Deep data can be deep scaline data or deep tile data, the type is defined in the header
attributes for that part. Deep data is supported in single-part and multi-part files. In
single-part files, it forms the deep scan line block or deep tile component. In multi-part
files it can be stored in any chunk regardless of the data type stored in other chunks.

Each pixel contains a list of samples. Each sample contains a fixed number of channels.
Typically, the data is used to store deep z-buffer information, where each sample
represents the colour at a different depth.

Some users choose to use a different file extension to indicate that an OpenEXR contains
deep data (for example, to allow an appropriate viewer to load when double-clicking a
file). In such circumstances, the extension DXR ("DepthEXR") is recommended. However,
since v2.0 files can contain a mixture of flat and deep data this practice should be
discouraged in favour of the EXR extension.

File Structure
An OpenEXR file is made up of: the header and the pixels.

Header
The header is a list of attributes that describe the pixels. An attribute is a named data item
of an arbitrary type. To ensure that OpenEXR files written by one program can be read by
other programs, certain required attributes must be present in all OpenEXR file headers:

11

attribute name description

displayWindow,
dataWindow

The image's display and data window.

pixelAspectRatio Width divided by height of a pixel when the image is
displayed with the correct aspect ratio. A pixel's width
(height) is the distance between the centers of two
horizontally (vertically) adjacent pixels on the display.

channels Description of the image channels stored in the file.

compression Specifies the compression method applied to the pixel
data of all channels in the file.

lineOrder Specifies in what order the scan lines in the file are
stored in the file (increasing Y, decreasing Y, or, for
tiled images, also random Y).

screenWindowWidt
h,
screenWindowCente
r

Describe the perspective projection that produced the
image (see page 7). Programs that deal with images as
purely two-dimensional objects may not be able so
generate a description of a perspective projection.
Those programs should set screenWindowWidth to 1,
and screenWindowCenter to (0, 0).

tileDescription This attribute is required only for tiled files. It
specifies the size of the tiles, and the file's level mode.

In addition to the required attributes, a program may place any number of additional
attributes in the file's header. Often it is necessary to annotate images with additional
data, for example color timing information, process tracking data, or camera position and
view direction. Those data can be packaged as extra attributes in the image file's header.

Multi-view header attributes

This attribute is required in the header for multi-view OpenEXR files.

attribute name Notes

view Specifies the view this part is associated with (mostly
used for files which stereo views).

• A value of left indicates the part is associated
with the left eye.

• A value of right indicates the right eye.
If there is no view attribute in the header, the entire
part contains information not dependent on a
particular eye.

12

For more information about multi-view files, see Storing Multi-View Image in OpenEXR
Files.

Multi-part and deep data attributes (New in 2.0)

These attributes are required in the header for all multi-part and/or deep data OpenEXR
files.

attribute name Notes

name The name attribute defines the name of each part. The
name of each part must be unique. Names may
contain '.' characters to present a tree-like structure of
the parts in a file.

type Data types are defined by the type attribute. There are
four types:

1. Scan line images: indicated by a type attribute
of “scanlineimage”.

2. Tiled images: indicated by a type attribute of
“tiledimage”.

3. Deep scan line images: indicated by a type
attribute of “deepscanline”.

4. Deep tiled images: indicated by a type attribute
of “deeptile”.

version version 1 data for all part types is described in
OpenEXR File Layout.

chunkCount chunkCount indicates the number of chunks in this
part.
Required if the multipart bit (12) is set.

tiles Required for parts of type tiledimage and deeptile.

Deep data header attributes (New in 2.0)

These attributes are required in the header for all files which contain deep data
(deepscanline or deeptile):

attribute name Notes

maxSamplesPerPixel Stores the maximum number of samples used by any
single pixel within the image. If this number is small,
it may be appropriate to read the deep image into a fix-
sized buffer for processing. However, this number
may be very large.

13

attribute name Notes

type There are two deep data types:

1. Deep scan line images (“deepscanline”).
2. Deep tiled images (“deeptile”).

version Should be set to 1. (It will be changed if the format is
updated.)

tiles Required if type is deeptile.

Pixels
A chunk is a set of pixel data of a particular format or data type (scanlines (or groups of
scanlines), tiles and deep data). The structure of a chunk is defined by the type of pixel
data stored in it.

In multi-part files, each part has it's own chunk and each chunk has a part number at the
beginning to correlate them with a header.

Scan line based

When a scan line based image file is written, the scan lines must be written either in
increasing Y order (top scan line first) or in decreasing Y order (bottom scan line first).
When a scan line based file is read, random access to the scan lines is possible; the scan
lines can be read in any order. Reading the scan lines in the same order as they were
written causes the file to be read sequentially, without "seek" operations, and as fast as
possible.

Tiled image

When a tiled image file is written or read, the tiles can be accessed in any order. When a
tiled file is written, the IlmImf library may buffer and sort the tiles, depending on the file's
line order. If the tiles in a file have been sorted into a predictable sequence, application
programs reading the file can avoid slow "seek" operations by reading the tiles
sequentially, in the order as they appear in the file.

For tiled files, line order is interpreted as follows:

line order description

INCREASING_Y The tiles for each level are stored in a contiguous block.
The levels are ordered like this:

(0, 0) (1, 0) ... (nx-1, 0)

(0, 1) (1, 1) ... (nx-1, 1)

...

(0, ny-1) (1, ny-1) ... (nx-1, ny-1),

14

line order description

where
nx = rf(log2(w)) + 1,
ny = rf(log2(h)) + 1

if the file's level mode is RIPMAP_LEVELS, or
nx = ny = rf(log2(max(w,h)) + 1

if the level mode is MIPMAP_LEVELS, or
nx = ny = 1

if the level mode is ONE_LEVEL.

In each level, the tiles are stored in the following order:

(0, 0) (1, 0) ... (tx-1, 0)

(0, 1) (1, 1) ... (tx-1, 1)

...

(0, ty-1) (1, ty-1) ... (tx-1, ty-1),
where tx and ty are the number of tiles in the x and y
direction respectively, for that particular level.

DECREASING_Y Levels are ordered as for INCREASING_Y, but within each
level, the tiles are stored in this order:

(0, ty-1) (1, ty-1) ... (tx-1, ty-1)

...

(0, 1) (1, 1) ... (tx-1, 1)

(0, 0) (1, 0) ... (tx-1, 0).

RANDOM_Y When a file is written, tiles are not sorted; they are stored
in the file in the order they are produced by the
application program.
If an application program produces tiles in an essentially
random order, selecting INCREASSING_Y or
DECREASING_Y line order may force the IlmImf library to
allocate significant amounts of memory to buffer tiles
until they can be stored in the file in the proper order. If
memory is scarce, allocating this extra memory can be
avoided by setting the file's line order to RANDOM_Y. In
this case the library doesn't buffer and sort tiles; each tile
is immediately stored in the file.

15

Deep data (New in 2.0)

Deep data is supported in single-part and multi-part files. In single-part files, it forms the
deep scan line block or deep tile component. In multi-part files it can be stored in any
chunk regardless of what other data is stored in other chunks.

Data Compression
OpenEXR currently offers four different data compression methods, with various speed
versus compression ratio tradeoffs. Optionally, the pixels can be stored in uncompressed
form. With fast filesystems, uncompressed files can be written and read significantly
faster than compressed files.

Compressing an image with a lossless method preserves the image exactly; the pixel data
are not altered. Compressing an image with a lossy method preserves the image only
approximately; the compressed image looks like the original, but the data in the pixels
may have changed slightly.

Supported compression schemes:

name description

PIZ
(lossless)

A wavelet transform is applied to the pixel data, and the result is
Huffman-encoded. This scheme tends to provide the best
compression ratio for the types of images that are typically
processed at Industrial Light & Magic. Files are compressed and
decompressed at roughly the same speed. For photographic
images with film grain, the files are reduced to between 35 and
55 percent of their uncompressed size.
PIZ compression works well for scan line based files, and also for
tiled files with large tiles, but small tiles do not shrink much.
(PIZ-compressed data start with a relatively long header; if the
input to the compressor is short, adding the header tends to
offset any size reduction of the input.)

ZIPS
(lossless)

Uses the open source zlib library for compression. Unlike ZIP
compression, this operates one scan line at a time.

16

name description

ZIP
(lossless)

Differences between horizontally adjacent pixels are compressed
using the open source zlib library. ZIP decompression is faster
than PIZ decompression, but ZIP compression is significantly
slower. Photographic images tend to shrink to between 45 and
55 percent of their uncompressed size.
Multi-resolution files are often used as texture maps for 3D
renderers. For this application, fast read accesses are usually
more important than fast writes, or maximum compression. For
texture maps, ZIP is probably the best compression method.
Unlike ZIPS compression, this operates in in blocks of 16 scan
lines.

RLE
(lossless)

Differences between horizontally adjacent pixels are run-length
encoded. This method is fast, and works well for images with
large flat areas, but for photographic images, the compressed file
size is usually between 60 and 75 percent of the uncompressed
size.

PXR24
(lossy)

After reducing 32-bit floating-point data to 24 bits by rounding,
differences between horizontally adjacent pixels are compressed
with zlib, similar to ZIP. PXR24 compression preserves image
channels of type HALF and UINT exactly, but the relative error of
FLOAT data increases to about 3×10-5. This compression method
works well for depth buffers and similar images, where the
possible range of values is very large, but where full 32-bit
floating-point accuracy is not necessary. Rounding improves
compression significantly by eliminating the pixels' 8 least
significant bits, which tend to be very noisy, and difficult to
compress.
Note: This lossy compression scheme is not supported in deep
files.

17

name description

B44 (lossy) Channels of type HALF are split into blocks of four by four pixels
or 32 bytes. Each block is then packed into 14 bytes, reducing
the data to 44 percent of their uncompressed size. When B44
compression is applied to RGB images in combination with
luminance/chroma encoding (see below), the size of the
compressed pixels is about 22 percent of the size of the original
RGB data. Channels of type UINT or FLOAT are not compressed.
Decoding is fast enough to allow real-time playback of B44-
compressed OpenEXR image sequences on commodity hardware.
The size of a B44-compressed file depends on the number of
pixels in the image, but not on the data in the pixels. All files
with the same resolution and the same set of channels have the
same size. This can be advantageous for systems that support
real-time playback of image sequences; the predictable file size
makes it easier to allocate space on storage media efficiently.
Note: This lossy compression scheme is not supported in deep
files.

B44A
(lossy)

Like B44, except for blocks of four by four pixels where all pixels
have the same value, which are packed into 3 instead of 14 bytes.
For images with large uniform areas, B44A produces smaller
files than B44 compression.
Note: This lossy compression scheme is not supported in deep
files.

Luminance/Chroma Images

Encoding images with one luminance and two chroma channels, rather than as RGB data,
allows a simple but effective form of lossy data compression that is independent of the
compression methods listed above. The chroma channels can be stored at lower
resolution than the luminance channel. This leads to significantly smaller files, with only
a small reduction in image quality. The specialized RGBA interface in the IlmImf library
directly supports reading and writing luminance/chroma images. When an application
program writes an image file, it can choose either RGB or luminance/chroma format.
When an image file with luminance/chroma data is read, the library automatically
converts the pixels back to RGB.

Given linear RGB data, luminance, Y, is computed as a weighted sum of R, G, and B:
Y =R × wRG × wGB × wB

18

The values of the weighting factors, wR, wG, and wB, are derived from the chromaticities of
the image's primaries and white point. (See RGB Color, on page 21.)

Chroma information is stored in two channels, RY and BY, which are computed like this:

RY =
R−Y

Y

BY =
B−Y

Y

The RY and BY channels can be low-pass filtered and subsampled without degrading the
original image very much. The RGBA interface in IlmImf uses vertical and horizontal
sampling rates of 2. Even though the resulting luminance/chroma images contain only
half as much data, they usually do not look noticeably different from the original RGB
images.

Converting RGB data to luminance/chroma format also allows space-efficient storage of
gray-scale images. Only the Y channel needs to be stored in the file. The RY and BY
channels can be discarded. If the original is already a gray-scale image, that is, every
pixel's red, green, and blue are equal, then storing only Y preserves the image exactly; the
Y channel is not subsampled, and the RY and BY channels contain only zeroes.

The HALF Data Type

Image channels of type HALF are stored as 16-bit floating-point numbers. The 16-bit
floating-point data type is implemented as a C++ class, half, which was designed to
behave as much as possible like the standard floating-point data types built into the C++
language. In arithmetic expressions, numbers of type half can be mixed freely with float
and double numbers; in most cases, conversions to and from half happen automatically.

half numbers have 1 sign bit, 5 exponent bits, and 10 mantissa bits. The interpretation of
the sign, exponent and mantissa is analogous to IEEE-754 floating-point numbers. half
supports normalized and denormalized numbers, infinities and NANs (Not A Number).
The range of representable numbers is roughly 6.0×10-8 - 6.5×104; numbers smaller than
6.1×10-5 are denormalized. Conversions from float to half round the mantissa to 10 bits;
the 13 least significant bits are lost. Conversions from half to float are lossless; all half
numbers are exactly representable as float values.

The data type implemented by class half is identical to Nvidia's 16-bit floating-point format
("fp16 / half"). 16-bit data, including infinities and NANs, can be transferred between
OpenEXR files and Nvidia 16-bit floating-point frame buffers without losing any bits.

19

What's in the Numbers?

We store linear values in the RGB 16-bit floating-point numbers. By this we mean that
each value is linear relative to the amount of light in the depicted scene. This implies that
display of images requires some processing to account for the non-linear response of a
typical display. In its simplest form, this is a power function to perform gamma correction.
There are many recent papers on the subject of tone mapping to represent the high
dynamic range of light values on a display. By storing linear data in the file (double the
number, double the light in the scene), we have the best starting point for these
downstream algorithms. Also, most commercial renderers produce linear values (before
gamma is applied to output to lower precision formats).

With this linear relationship established, the question remains, What number is white?
The convention we employ is to determine a middle gray object, and assign it the
photographic 18% gray value, or .18 in the floating point scheme. Other pixel values can
be easily determined from there (a stop brighter is .36, another stop is .72). The value 1.0
has no special significance (it is not a clamping limit, as in other formats); it roughly
represents light coming from a 100% reflector (slightly brighter than paper white). But
there are many brighter pixel values available to represent objects such as fire and
highlights.

The range of normalized 16-bit floats can represent thirty stops of information with 1024
steps per stop. We have eighteen and a half stops over middle gray, and eleven and a half
below. The denormalized numbers provide an additional ten stops with decreasing
precision per stop.

20

Recommendations

RGB Color
Simply calling the R channel red is not sufficient information to determine accurately the
color that should be displayed for a given pixel value. The IlmImf library defines a
"chromaticities" attribute, which specifies the CIE x,y coordinates for red, green, blue, and
white; that is, for the RGB triples (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1). The x,y coordinates
of all possible RGB triples can be derived from the chromaticities attribute. If the
primaries and white point for a given display are known, a file-to-display color transform
can correctly be done. The IlmImf library does not perform this transformation; it is left
to the display software. The chromaticities attribute is optional, and many programs that
write OpenEXR omit it. If a file doesn't have a chromaticities attribute, display software
should assume that the file's primaries and the white point match Rec. ITU-R BT.709-3:

 CIE x, y

red 0.6400, 0.3300

green 0.3000, 0.6000

blue 0.1500, 0.0600

white 0.3127, 0.3290

CIE XYZ Color
In an OpenEXR file whose pixels represent CIE XYZ tristimulus values, the pixels' X, Y and
Z components should be stored in the file's R, G and B channels. The file header should
contain a chromaticities attribute with the following values:

 CIE x, y

red 1, 0

green 0, 1

blue 0, 0

white 1/3, 1/3

21

Channel Names
An OpenEXR image can have any number of channels with arbitrary names. The
specialized RGBA image interface assumes that channels with the names "R", "G", "B" and
"A" mean red, green, blue and alpha. No predefined meaning has been assigned to any
other channels. However, for a few channel names we recommend the interpretations
given in the table below. We expect this table to grow over time as users employ OpenEXR
for data such as shadow maps, motion-vector fields or images with more than three color
channels.

name interpretation

Y luminance, used either alone, for gray-scale images, or in
combination with RY and BY for color images.

RY, BY chroma for luminance/chroma images, see above.

AR, AG, AB red, green and blue alpha/opacity, for colored mattes (required
to composite images of objects like colored glass correctly).

In an image file with many channels it is sometimes useful to group the channels into
layers, that is, into sets of channels that logically belong together. Grouping is done using
a naming convention: channel C in layer L is called L.C.

For example, an image may contain separate R, G and B channels for light that originated
at each of several different virtual light sources. The channels in such an image might be
called "light1.R", "light1.G", "light1.B", "light2.R", "light2.G", "light2.B", etc.

Layers can be nested. A name of the form L1.L2.L3 ... Ln.C means that layer L1 contains a
nested layer L2, which in turn contains another nested layer L3, and so on to layer Ln,
which contains channel C.

For example, "light1.specular.R" identifies the "R" channel in the "specular" sub-layer of
layer "light1".

Note that this naming convention does not describe a back-to-front stacking order or any
compositing operations for combining the layers into a final image.

For another example of a channel naming convention, see Storing Multi-View Images in
OpenEXR Files.

Deep data - special purpose channels and reserved channel names (New in 2.0)
Deep data parts reserve a set of channel names for sorts of data often used by developers.
Only use these channel names for the correct purpose (listed below). If there is a reserved
channel name for the data you are handling, always use the appropriate channel name.

name definition notes

Z depth of front (closest
point) of sample1

All samples should be sorted according to
their Z value.

22

name definition notes

ZBack Depth of back (farthest
point) of sample1

If a sample has ZBack > Z, then the sample
is a volumetric sample. If a sample has no
ZBack channel, assume Zback=Z.

A sample opacity value The light attenuated by this sample in
isolation.

R, G, B red, green blue values of
sample

If a channel is present, then the cumulative
pre-multiplied colour between the front and
the back of this sample (Z).

RA, GA, BA red, green, blue sample
alpha values

Per-channel light attenuation of sample in
isolation (similar to A, but each channel
recorded separately). Intended for
computing coloured shadows2.

id object ID number Samples belonging to the same object have
the same ID number.

Volumetric sample representation

Where samples have Z<ZBack, the sample is volumetric. The sample should be assumed to
have constant optical density between its front and back. If it is necessary to split a
sample at some depth d (where Z<d<ZBack), Beer-Lambert's equation should be used to
compute the alpha for the split sample:

α =1−(1−A)

d −Z
ZBack−Z

Note: This is not a linear increase in alpha between the front and back and distances.

Standard Attributes
By adding attributes to an OpenEXR file, application programs can store arbitrary
auxiliary data along with the image. In order to make it easier to exchange data among
programs written by different people, the IlmImf library defines a set of standard
attributes for commonly used data, such as colorimetric data (see RGB Color, above), time
and place where an image was recorded, or the owner of an image file's content.
Whenever possible, application programs should store data in standard attributes, instead
of defining their own. For a current list of all standard attributes, see the IlmImf library's
source code. The list grows over time as OpenEXR users identify new types of data they
would like to represent in a standard way.

1 Z and ZBack distances are the z-coordinate of the point in camera space (that is, the
distance to plane on which point lies), not the actual distance to the point.

2 If a part contains RA,GA and/or BA channels, it must not also contain an A channel.

23

Premultiplied vs. Un-Premultiplied Color Channels
The A, AR, AG, and AB channels in an OpenEXR image represent alpha or opacity: 0.0
means the pixel is transparent; 1.0 means the pixel is opaque. By convention, all color
channels are premultiplied by alpha, so that

composite = foreground + (1-alpha) × background

performs a correct "over" operation.

Describing the color channels as "premultiplied" is a shorthand for describing a correct
"over" operation. With un-premultiplied color channels "over" operations would require
computing

composite = alpha × foreground + (1-alpha) × background.

"Premultiplied" does not mean that pixels with zero alpha and non-zero color channels are
illegal. Such a pixel represents an object that emits light even though it is completely
transparent, for example, a candle flame.

In the visual effects industry premultiplied color channels are the norm, and application
software packages typically use internal image representations that are also premultiplied.

Managing un-premultiplied color channels
However, some applications use an internal representation where the color channels have
not been premultiplied by alpha. Since pixels with zero alpha and non-zero color can and
do occur in OpenEXR images, application programs with un-premultiplied color channels
should take care to avoid discarding the color information in pixels with zero alpha. After
reading an OpenEXR image such an application must undo the premultiplication by
dividing the color channels by alpha. This division fails when alpha is zero. The
application software could set all color channels to zero wherever the alpha channel is
zero, but this might alter the image in an irreversable way. For example, the flame on top
of a candle would simply disappear and could not be recovered.

If the internal un-premultiplied image representation uses 32-bit floating-point numbers
then one way around this problem might be to set alpha to max (h, alpha) before dividing,
where h is a very small but positive value (h should be a power of two and less than half of
the smallest positive 16-bit floating-point value). The result of the division becomes well-
defined, and the division can be undone later, when the image is saved in a new OpenEXR
file. Depending on the application software there may be other ways to preserve color
information in pixels with zero alpha.

Credits

The ILM OpenEXR file format was designed and implemented by Florian Kainz,
Wojciech Jarosz, and Rod Bogart. The PIZ compression scheme is based on an algorithm

24

by Christian Rouet. Josh Pines helped extend the PIZ algorithm for 16-bit and found
optimizations for the float-to-half conversions. Drew Hess packaged and adapted ILM's
internal source code for public release and maintains the OpenEXR software distribution.
The PXR24 compression method is based on an algorithm written by Loren Carpenter at
Pixar Animation Studios.

OpenEXR was developed at Industrial Light & Magic, a division of Lucas Digital Ltd. LLC,
Marin County, California.

25

	Document Purpose and Audience
	Features of OpenEXR
	Features Which Have Been Added in 2.0

	Overview of the OpenEXR File Format
	Definitions and Terminology
	Pixel space
	Display window
	Data window
	Image channels and sampling rates
	Projection, camera coordinate system and screen window
	Scan lines
	Tiles
	Levels and level modes
	Level numbers, level size and rounding mode
	Tile coordinates
	View
	Part (New in 2.0)
	Deep data (New in 2.0)

	File Structure
	Header
	Multi-view header attributes
	Multi-part and deep data attributes (New in 2.0)
	Deep data header attributes (New in 2.0)

	Pixels
	Scan line based
	Tiled image
	Deep data (New in 2.0)

	Data Compression

	Luminance/Chroma Images
	The HALF Data Type
	What's in the Numbers?
	Recommendations
	RGB Color
	CIE XYZ Color
	Channel Names
	Deep data - special purpose channels and reserved channel names (New in 2.0)
	Volumetric sample representation

	Standard Attributes
	Premultiplied vs. Un-Premultiplied Color Channels
	Managing un-premultiplied color channels

	Credits

