
OpenEXR Image Viewing Software

Florian Kainz,

Industrial Light & Magic

updated 10/29/2019

This document describes two OpenEXR image viewing software programs, exrdisplay and playexr. It
briefly explains real-time playback of moving image sequences and color rendering, and describes how
to test if other image viewing software displays OpenEXR images correctly.

Introduction
The OpenEXR_Viewers package contains two programs for viewing OpenEXR image files on a computer
monitor: exrdisplay for still images and playexr for moving image sequences.

The exrdisplay and playexr programs are reference implementations. Other OpenEXR image display
software can be checked against exrdisplay or playexr in order to verify that images are correctly
placed on the screen and that colors are reproduced as intended. The source code for exrdisplay and
playexr provides a set of programming examples that demonstrate two ways to implement an
OpenEXR image viewer.

While exrdisplay and playexr do display images and are good enough for experimentation and
occasional use, the programs are not intended to be industrial-strength tools. The programs lack
features that users would expect from software intended to be employed every day, for example,
zooming and panning, image comparison or histogram displays. exrdisplay and playexr are meant
to help developers build production-quality software.

The programs demonstrate two different approaches to building an image viewer:

exrdisplay performs all image processing and color rendering in software, without relying on
specialized graphics hardware to accelerate any of the operations. The program supports a variety of
display options, for example, displaying individual image channels, displaying the lower-resolution
levels of mipmaps and ripmaps, or cyclically shifting an image to check if it tiles seamlessly. The quality
of the displayed images is close to optimal. However, the program is relatively slow.

1

playexr is designed to play back moving image sequences directly from disk, without preprocessing or
in-memory caching of the images. The program requires graphics hardware that supports the Cg
shading language. The program is multi-threaded. One thread controls file loading from disk while
another thread displays the images on the screen. Additional threads, inside the IlmImf library, can
accelerate file loading. In order to be as fast as possible, image processing and color rendering take a
few shortcuts: color transforms are baked into a 3D lookup table, and a Cg shader applies the lookup
table to the image pixels. This Cg shader also converts luminance/chroma images to RGB. The quality of
the displayed images is generally very high, although occasionally there may be small but noticeable
differences between what playexr and exrdisplay show on the screen.

Real-Time Playback
When image sequences are played back with playexr, the maximum frame rate that can be maintained
for a given image resolution depends on the available hardware and on how the images are stored. In
tests at Industrial Light & Magic (November 2006), we were able to play back a 10,000-frame image
sequence with a resolution of 2048 by 872 pixels at a controlled rate of 30 fps (frames per second).
When playexr was allowed to run as fast as possible instead of trying to maintain a specific constant
frame rate, images were read from disk and displayed at a variable rate of about 35 to 45 fps. We used a
Hewlett-Packard wx9400 workstation equipped with an Nvidia Quadro FX 5500 graphics card and two
10,000 rpm SATA drives in a RAID0 configuration. The operating system was Linux. The images were
B44-compressed and stored in luminance/chroma format. The frame rate appeared to be limited by disk
access times and I/O bandwidth. When the image files were already present in the operating system's
buffer cache instead of being read directly from disk, playexr achieved a controlled rate of 40 fps and a
maximum rate of 50 to 55 fps. At that point the frame rate appeared to be limited by the throughput of
the graphics card; files in the buffer cache were read at about 90 to 100 fps when the images were
simply discarded instead of being displayed.

In order to make real-time playback possible, certain constraints must be placed on the image files: since
most of OpenEXR's data compression schemes are too slow for real-time decoding on current hardware,
the files must be stored either B44-compressed or uncompressed. Additional image channels that will
not be displayed should be avoided. The extra channels require additional I/O bandwidth and decoding
speed. High-resolution images should be stored in luminance/chroma rather than RGB format. Since
luminance/chroma files are only half as big as RGB files, they require less bandwidth and they are
decoded faster.

When uncompressed images are played back, the maximum frame rate probably will be limited by the
available disk I/O bandwidth. Playback of high-resolution images requires very fast disks.

The B44 compression scheme was designed specifically to enable real-time image playback with lower I/
O bandwidth. Decoding of B44-compressed files is very fast. B44 compression has a fixed compression
rate of 2.28:1, which does not depend on image content. If B44 compression is combined with
luminance/chroma storage the total compression rate is 4.57:1.

By default, playexr loads image files using only a single thread. The -t command line flag enables
multi-threaded file loading and specifies the number of additional file reading threads. The optimum
number of threads depends on the available hardware. If a machine supports very fast file I/O, the
number of additional threads should be equal to the number of available processors. If playback speed
is limited by I/O bandwidth, a smaller number of threads may yield the same frame rate.

2

Color Rendering
Conceptually, most OpenEXR image files are scene referred or focal-plane referred. The values stored in
the pixels are proportional to the relative amount of light coming from the corresponding objects in the
depicted scene. The pixels in the file do not directly represent the colors that should appear on the
screen when the image is displayed. Color rendering converts the pixel values in the file into pixel
colors for the screen.

In exrdisplay and playexr color rendering is performed by applying a series of color transforms.
Color transforms are represented as functions written in a Color Transformation Language (CTL). Color
rendering as implemented in exrdisplay and playexr follows the model that is currently (as of
November 2006) being developed by the Image Interchange Framework Committee of the Academy of
Motion Picture Arts and Sciences.

In this model, an optional look modification transform alters the original pixels to achieve particular
look for the image. A rendering transform then converts the pixels into output-referred pixels for
display on an ideal device. The rendering transform is followed by a display transform that converts
pixels for the ideal device into pixels for an actual display device, such as a video monitor.

Before applying any color transforms, exrdisplay and playexr must load the corresponding CTL
functions. The name of the function that represents the look modification transform is taken from the
lookModTransform string attribute in the header of the image file. If the file header does not contain a
lookModTransform attribute, then no look modification transform will be applied to the image. The
name of the function that represents the rendering transform is taken from the renderingTransform
string attribute in the header of the image file. If the file header does not contain such an attribute, a
default name, “transform_RRT”, is used. (RRT stands for Reference Rendering Transform.) The name of
the display transform is taken from the environment variable CTL_DISPLAY_TRANSFORM. If this
environment variable is not set, a default name, “transform_display_video”, is used.

Once the names of the transforms are known, the corresponding CTL source files must be loaded. Each
transform is assumed to live in a file with the same name the transform, but with .ctl appended to the
file name. For example, CTL function transform_RRT() lives in file transform_RRT.ctl. The actual
source files are located via a search path, which is specified by the CTL_MODULE_PATH environment
variable.

Notes:

• Color rendering as described above requires that exrdisplay and playexr are linked with a
CTL interpreter. The CTL interpreter is not included in OpenEXR. The source code for the
interpreter is available at http://ampasctl.sourceforge.net/. Both exrdisplay and playexr can
be built without a CTL interpreter; color rendering will be disabled, but otherwise the programs
will work.

• At a Birds-of-a-Feather meeting during the ACM Siggraph 2004 conference, ILM proposed a
model for OpenEXR color management that differs significantly from the Academy's model.
ILM's proposed color management model is not implemented in the current versions of
exrdisplay and playexr.

Environment Variables
Several environment variables affect how exrdisplay and playexr reproduce color:

3

http://ampasctl.sourceforge.net/

name description default value

CTL_DISPLAY_TRANSFORM The name of the CTL display transform. “transform_display_vid
eo”

CTL_DISPLAY_CHROMATICITIES The CIE x,y coordinates of the primaries
and white point of the display.

“red 0.6400 0.3300
 green 0.3000 0.6000
 blue 0.1500 0.0600
 white 0.3127 0.3290”
(primaries and white
point according to
Rec. ITU-R BT.709-3)

CTL_DISPLAY_WHITE_LUMINANCE The maximum luminance, in cd/m2, of the
display.

120.0

CTL_SURROUND_LUMINANCE The luminance, in cd/m2, of the
background that surrounds the display.

0.1 times the maximum
display luminance.

CTL_MODULE_PATH The search path that is used to locate CTL
modules. The path consists of a colon-
separated list of directory names, for
example, “.:./ctl:/usr/local/ctl”

“.” (the search path
contains only the
current working
directory)

EXR_DISPLAY_VIDEO_GAMMA The video gamma of the display, used by
exrdisplay and playexr to convert the
output of the display transform into
hardware frame buffer values.

2.2

Only the values of the CTL_MODULE_PATH and EXR_DISPLAY_VIDEO_GAMMA environment variables are
used directly by exrdisplay and playexr. The values of the other environment variables in the table
above are made available to the CTL transforms.

CTL Inputs and Outputs
When exrdisplay or playexr calls the CTL transforms, the R, G and B channels of the image files are
made available to the rendering transform as three varying input parameters, R, G and B, of type
half. The display transform must make the R, G and B channels of the final image available as three
varying output parameters, R_display, G_display and B_display. By convention, the pixels
produced by the rendering transform are passed to the display transform as three varying parameters,
X_OCES, Y_OCES and Z_OCES, of type half.

In addition to the input and output image channels, as well as the attributes in the header of the input
image file, both the rendering and the display transform have access to the following data:

4

name and type description

Chromaticities chromaticities The CIE x,y coordinates of the primaries and white
point of the image file, as specified by the chromaticities
attribute in the input file header. If the header does not
contain a chromaticities attribute, then the primaries
and white point are set according to Rec. ITU-R BT.709-3.

Chromaticities displayChromaticities The CIE x,y coordinates of the primaries and white
point of the display, as specified by the
CTL_DISPLAY_CHROMATICITIES environment variable.

float displayWhiteLuminance The maximum luminance of the display, as specified by
the CTL_DISPLAY_WHITE_LUMINACE environment
variable.

float displaySurrondLuminance The luminance of the display surround, as specified by
the CTL_DISPLAY_SURROUND_LUMINANCE environment
variable.

Testing Other OpenEXR Viewers
As mentioned above, exrdisplay and playexr are reference implementations that software
developers can use to test if their own OpenEXR image viewers display images correctly. A directory
tree with OpenEXR sample images can be downloaded from http://www.openexr.com/. In general,
image viewers should display all the sample images the same way as exrdisplay and playexr. In
particular, developers should pay attention to the following:

Directory DisplayWindow contains a series of files, t01.exr, t02.exr ... t16.exr, that can be used to
test if an image viewer properly places, crops and pads the images. All files contain the same grid of 400
by 300 pixels, but the data window, display window and pixel aspect ratio differ. For file t01.exr,
where the display window and the data window are the same, the pixels should fill the entire on-screen
area where the image is displayed. The image should be cropped for files where the data window
extends outside the display window, and padded with pixels of an appropriate background color for
files where the display window extends outside the data window. The pixel aspect ratio in files t15.exr
and t16.exr is not 1.0; that is, the pixels are not square. The images must be stretched horizontally or
vertically when displayed on a screen with square pixels.

Directory LuminanceChroma contains several files that are stored in luminance/chroma format, with a Y
channel and sub-sampled RY and BY channels, as well as one file image with only a Y channel. The
luminance/chroma images should be displayed in color, and the Y-only image, Garden.exr, should be
displayed in black and white.

Directory Chromaticities contains four versions of the same color image: two where the primaries
and white point match Rec. ITU-R BT.709-3, and two with CIE 1931 X, Y and Z primaries and an equal-
energy white point (CIE illuminant E). One of the Rec. 709 files and one of the XYZ files are stored in
luminance/chroma format. Displayed properly, all four versions of the image should look the same.

5

http://www.openexr.com/

Directory MultiResolution contains several mip-map and rip-map multi-resolution image files. Unless
instructed otherwise by the user, OpenEXR viewers should display the highest-resolution version of the
image. Some viewing software may want to use the lower-resolution versions to implement fast zoom
and pan operations for images whose highest resolution exceeds the resolution of the display screen.

Files AllHalfValues.exr, WideFloatRange.exr and WideColorGamut.exr in directory TestImages
contain valid but unusual pixel data. The pixels in those files contain very large numbers, negative
numbers, infinities and NaNs. None of the files should cause an OpenEXR viewer to fail. Pixel values
that are within the capabilities of the display screen should be handled as in other image files; the rest
should be clamped to the display's maximum or minimum luminance.

6

	OpenEXR Image Viewing Software
	Introduction
	Real-Time Playback
	Color Rendering
	Environment Variables
	CTL Inputs and Outputs
	Testing Other OpenEXR Viewers

